6 Sets

Exercise 1
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6.1
DEFINITION


A set is a collection of objects, numbers, ideas etc. The different objects in the set are called the elements or members of the set.


A set may be defined by using any one of the following methods:


(i)
By listing all the members, for instance, 
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 and 
[image: image2.wmf]{

}

dog, cat, bird

B

=

. The order does not matter and the elements are listed once only.

(ii) By listing only enough elements to indicate the pattern and showing that the pattern continues by using dots ‘
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’. For instance, 
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(iii) By a description such as 
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(iv) By issuing an algebraic expression such as 
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, which means “the set E contains the set of elements, x, such that x is an integer whose value lies between 2 and 7 inclusive”.  (See Set-builder Notation below)
6.1.1
ELEMENTS  

The elements of a set are the individual members of that set. For instance, if 
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 and 11. So, since the number 2 is an element (or member) of A, we can write 
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’ denotes ‘belongs to’, ‘is a member of’ or ‘is an element of’.


On the other hand, the number 13 does not belong to the set A and so we can write 
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6.1.2
SET-BUILDER NOTATION  
Commonly used notation for sets on the real line:
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 is the set of real numbers



[image: image13.wmf]+

¡

 is the set of positive real numbers, i.e. 
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 is the set of natural numbers, 
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 is the set of integers, 
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 is the set of positive integers, 
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Example:

(a)
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(b)
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can be written as 
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(c)
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(d)
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 can be written as 
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(e) 
The set of positive real numbers less than 3 can be written as 
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In the above, ‘n’, ‘p’ and ‘x’ are dummy variables.

6.1.3
ORDER OF A SET  

The order of a set is the number of elements contained in the set. For example, if 
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6.1.4
TYPES OF SETS  
(i)
FINITE SETS


These are sets in which all the elements can be listed, such as 
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(ii)
INFINITE SETS


These are sets in which it is impossible to list all the elements. For instance, 
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(iii)
EMPTY OR NULL SET


A set with no elements is known as an empty set (or null set), denoted by 
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Example:
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(iv)
EQUAL SETS


Two sets A and B are equal if they have the same elements. This is written as 
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(v)
SUBSETS


If all members of a set A are also members of the set B, then A is said to be a subset of B.


For instance, consider the sets 
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A is a subset of C, written as 
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Also, 
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However, we note that 
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If 
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Also, for any set A, 
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(vi)
UNIVERSAL SET


The universal set for any particular problem is the set which contains all the available elements for the problem. Thus if the universal set is all the odd numbers up to and including 11, we write 
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(vii)
COMPLEMENT OF A SET


Consider 
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Hence, if 
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 is the universal set, the complement of P is the set 
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6.2
INTERSECTION AND UNION OF SETS  

6.2.1
VENN DIAGRAM  

The pictorial representation of the relationship between sets is called a Venn diagram.
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Example: 
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 can be represented by the following Venn diagram: 

Example: Consider 
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The above Venn diagrams illustrate two different ways of representing the sets. Instead of listing the elements in each set, we can write down the number of elements of each set as shown in the diagram on the right.

Note: If 
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 is a universal set and A is any set, then 
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In order to identify a set in a Venn diagram, we shade the region representing a set A as shown:
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6.2.2
INTERSECTION OF SETS  


The intersection of set A and set B is the set which contains all the elements that are elements of both set A and set B and is denoted by 
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That is 
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Two sets A and B are disjoint 
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Example:
A and B are two sets and the number of elements in each set is shown in the Venn diagram. Given that 
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(a)   the value of x,
(b)   
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Solution:
(a)

[image: image70.wmf](

)

(

)

nAnAB

¢

=

I







[image: image71.wmf]326

9

xx

x

+=-

=




(b)
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6.2.3
UNION OF SETS  


The union of set A and set B is the set which contains all the elements that are either elements of set A or set B or in both, and is denoted by 
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That is 
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Venn Diagrams: 
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In general, for any set A and the universal set 
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Example 1: 
Let 
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Describe the members of the following sets:



(a)  
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Solutions:

Example 2:
Given that 
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 is the universal set and 
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, in separate Venn diagrams, shade the sets:
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(a)   
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Example 3:
In the Venn diagrams below, shade the sets:
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Example 4:
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6.3
SET OF REAL NUMBERS ON THE REAL LINE  


The set 
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 can be represented graphically on the REAL LINE as shown below. With the aid of the graphical representation, the sets 
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From the above, it is clear that 
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6.4
SET OF POINTS IN A PLANE  
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The set  L denotes the set of points on the line 
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6.5
APPLICATIONS  

Example:
(a)
G and H are sets of students who study Geography and History respectively. Using the letters G, H, set notation and 
[image: image118.wmf]x

 to represent set members, write down an expression for the following statements:

(i) “x is a member of the set of students who study both Geography and History”,

(ii) “x is a member of the set of students who study only History”.


Illustrate, by shading on a Venn diagram, the region that 
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 could lie in.



(b)
There are 32 students in a class and each studies at least one of the subjects: Geography or History. Of these, 22 study Geography and 15 study History. By drawing a Venn diagram, find the number of students who study both History and Geography.

Solution:
(a) (i)  
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     (ii)  
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(b) 
Let 
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Hence there are 5 students who study both Histoy and Geography.

Practice


1.
In a group of 20 students, 14 play badminton, 9 play table tennis and 
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 do not play either of the games.

(a) If 
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(b) If 
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      Solution:

(a) Let 
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If 
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Thus the number of students who play both games is 3.
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(b)

[image: image140.wmf]x

 has the greatest value when 
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Hence
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Thus the greatest value of x is 6.


2.
A group of students was given a choice to study the subjects – physics, chemistry and biology. The Venn diagram shows some of the information about their choices.
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(a)
Given that 30 students took physics and 25 students took chemistry, find




(i)
the value of 
[image: image143.wmf]x

,




(ii) 
the number who took physics only,




(iii)
the number who took at least two of the subjects.



(b)
Given also that 50 students were in the group, and each of them took at least one of the subjects, calculate the number who took biology only.





[Ans: 6, 14, 22, 9]


3.
Of the 24 students in a class, 18 like to play basketball and 12 like to play volleyball. It is given that 
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Let 
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(a) Describe the set 
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(b) Find the smallest possible value of 
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(c) Find the largest possible value of 
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